Radiomics-based Artificial Intelligence System to Predict Neoadjuvant Treatment Response in Rectal Cancer
-
- STATUS
- Recruiting
-
- participants needed
- 100
-
- sponsor
- Sixth Affiliated Hospital, Sun Yat-sen University
Summary
In this study, investigators utilize a radiomics prediction model to predict the tumor response to neoadjuvant chemoradiotherapy (nCRT) before the nCRT is administered for patients with locally advanced rectal cancer (LARC). Previously, the radiomics prediction model has been constructed based on the radiomics features extracted from pretreatment Magnetic Resonance Imaging (MRI) in the training set, and optimized in the external validation set. The predictive power of this radiomics prediction model to discriminate the pathologic complete response (pCR) patients from non-pCR individuals, will be further verified in this prospective, multicenter clinical study.
Description
This is a multicenter, prospective, observational clinical study for validation of a radiomics-based artificial intelligence (AI) prediction model. Patients who have been pathologically diagnosed as rectal adenocarcinoma and defined as clinical II-III staging without distant metastasis will be enrolled from the Sixth Affiliated Hospital of Sun Yat-sen University, the Third Affiliated Hospital of Kunming Medical College and Sir Run Run Shaw Hospital Affiliated by Zhejiang University School of Medicine. All participants should follow a standard treatment protocol, including concurrent neoadjuvant chemoradiotherapy (nCRT), total mesorectum excision (TME) surgery and adjuvant chemotherapy. Enhanced Magnetic Resonance Imaging (MRI) examination should be completed before the administration of nCRT treatment. The tumor volumes at high solution T2-weighted, contrast-enhanced T1-weighted and diffusion weighted images will be manually delineated, respectively. The outlined MRI images will be captured by the radiomics prediction model to generate a predicted response ("predicted pCR" vs. "predicted non-pCR") of each patient, whereas the true response ("confirmed pCR" vs. "confirmed non-pCR") is derived from pathologic reports after TME surgery serving as the gold standard for evaluation. The prediction accuracy, specificity, sensitivity and Area Under Curve (AUC) of Receiver Operating Characteristic (ROC) curves will be calculated. This study is aimed to provide a reliable and accurate AI system to predict the pathologic tumor response to nCRT before its administration, which might facilitate the identification of pCR candidates for further precision therapy among patients with locally advanced rectal cancer.
Details
Condition | Colorectal Cancer, Colorectal Cancer, Rectal Cancer, Rectal Cancer |
---|---|
Age | 18years - 75years |
Clinical Study Identifier | NCT04273477 |
Sponsor | Sixth Affiliated Hospital, Sun Yat-sen University |
Last Modified on | 19 February 2024 |
How to participate?
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreSimilar trials to consider
Browse trials for
Not finding what you're looking for?
Sign up as a volunteer to stay informed
Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteerStudy AnnotationsStudy Notes
Notes added here are public and can be viewed by anyone. Notes added here are only available to you and those who you share with.
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Add a private note
- Select a piece of text from the left.
- Add notes visible only to you.
- Send it to people through a passcode protected link.
Study Definition
WikipediaAdd a private note
- Select a piece of text.
- Add notes visible only to you.
- Send it to people through a passcode protected link.